STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数

news/2025/2/26 8:24:29

RTOStask_api__0">STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数

STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件,不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板为例,只用到USB,USART1极少的接口,体现FreeRTOS的各种操作过程。
在这里插入图片描述
操作教程(十三)配置FreeRTOS及相关环境,采用task api 任务访问函数获取任务状态参数,通过USB虚拟串口接收指令,根据指令执行相关的任务访问函数,并通过USB虚拟串口返回结果。常用的task api有如下一些:
在这里插入图片描述
FreeRTOS教程较多,推荐参考正点原子所出的《STM32F407 FreeRTOS开发手册》了解相关知识。
在这里插入图片描述
在这里插入图片描述

STM32CUBEIDE工程配置

选择TIM1(也可以是其它TIM)作为FreeRTOS操作系统占用的时钟源:
在这里插入图片描述

在这里插入图片描述

配置时钟树包括USB的48MHz时钟:
在这里插入图片描述
配置PC13为低电平点灯的管脚:
在这里插入图片描述
配置USB串口:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
配置UART1串口(但本例中不用到UART1):
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

RTOS_32">FreeRTOS配置

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存并生成基础工程代码:
在这里插入图片描述
在生成代码的这个部分可以看到FreeRTOS代码部分:
在这里插入图片描述

任务实现

基于前述的配置,main.c代码里会加载Free-RTOS的配置,并启动几个任务的调度,当然,此时的任务都是什么也不干。实现LED闪灯,就在LED闪灯任务里加入代码即可:

void StartTask_TASK_LED_FLASH(void *argument)
{
  /* USER CODE BEGIN StartTask_TASK_LED_FLASH */
  /* Infinite loop */
  for(;;)
  {
    osDelay(1000);
    HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13);
  }
  /* USER CODE END StartTask_TASK_LED_FLASH */
}

也就实现了LED闪灯功能,其中osDelay(1000);实现1秒时间的操作系统调度延时,也就是1秒执行一次LED灯的亮灭。osDelay(1);是最小的调度延时,为1毫秒。要实现更小的延时,则可以用微秒延时函数实现,参考《STM32 HAL us delay(微秒延时)的指令延时实现方式及优化》

在USB虚拟串口的接收数据回调函数里,接收指令信息:
在这里插入图片描述

static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
{
  /* USER CODE BEGIN 6 */
	extern uint8_t USB_VCOM_BUFF[1024];
	extern uint32_t USB_VCOM_INDEX;

	extern osSemaphoreId_t USB_VCOM_BinarySem01Handle;
	extern BaseType_t USB_VCOM_pxHigherPriorityTaskWaken;

	memcpy(USB_VCOM_BUFF+USB_VCOM_INDEX, Buf, *Len);
	xSemaphoreGiveFromISR(USB_VCOM_BinarySem01Handle, &USB_VCOM_pxHigherPriorityTaskWaken);
	USB_VCOM_INDEX += *Len;


  USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);
  USBD_CDC_ReceivePacket(&hUsbDeviceFS);
  return (USBD_OK);
  /* USER CODE END 6 */
}

在main.c的USB任务里,根据指令信息进行任务访问函数的调用和反馈:

void StartTask_TASK_USB_VCOM(void *argument)
{
  /* USER CODE BEGIN StartTask_TASK_USB_VCOM */
  BaseType_t err_stu = pdFALSE;

  UBaseType_t result = 0;

  /* Infinite loop */
  for(;;)
  {
    osDelay(10);
    USB_VCOM_xBlockTime = 0; //Block(waiting) time to get semaphore
    err_stu = xSemaphoreTake(USB_VCOM_BinarySem01Handle, USB_VCOM_xBlockTime);
    if(err_stu==pdTRUE)
    {

    	if(USB_VCOM_BUFF[0]==0x01) //Get task priority
    	{
    		result = uxTaskPriorityGet(TASK_LED_FLASHHandle);
    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "LED task's priority is %d\r\n", result);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x02) //Set task priority from current priority + 1
    	{
    		result = uxTaskPriorityGet(TASK_LED_FLASHHandle) + 1;
    		vTaskPrioritySet(TASK_LED_FLASHHandle, result);
    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "LED task's priority is set to %d\r\n", result);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x03) //Get all tasks' status and output LED task status
    	{
            uint32_t rt = 0;
    		TaskStatus_t * SB = pvPortMalloc(1024);
    		result = uxTaskGetSystemState(SB, 20, &rt);
    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Task number got is %d\r\n", result);
    		usbprintstring(TB);

    		for(uint32_t i=0; i<result;i++)
    		{
    			if(SB[i].xHandle == TASK_LED_FLASHHandle)
    			{
    	    		sprintf(TB, "LED task handle = %d\r\n", SB[i].xHandle);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task name = %s\r\n", SB[i].pcTaskName);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", SB[i].eCurrentState);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task current priority = %d\r\n", SB[i].uxCurrentPriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task base priority = %d\r\n", SB[i].uxBasePriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task runtime counter = %d\r\n", SB[i].ulRunTimeCounter);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack base = 0x%.8x\r\n", SB[i].pxStackBase);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack high water mark = %d\r\n", SB[i].usStackHighWaterMark);
    	    		usbprintstring(TB);

    			  break;
    			}
    		}

    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x04) //Get and output LED task's status
    	{
            uint32_t rt = 0;
    		TaskStatus_t * SB = pvPortMalloc(1024);
    		vTaskGetInfo(TASK_LED_FLASHHandle, SB, pdTRUE, eInvalid);
    		char * TB = pvPortMalloc(1024);

    	    		sprintf(TB, "LED task handle = %d\r\n", (*SB).xHandle);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task name = %s\r\n", (*SB).pcTaskName);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", (*SB).eCurrentState);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task current priority = %d\r\n", (*SB).uxCurrentPriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task base priority = %d\r\n", (*SB).uxBasePriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task runtime counter = %d\r\n", (*SB).ulRunTimeCounter);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack base = 0x%.8x\r\n", (*SB).pxStackBase);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack high water mark = %d\r\n", (*SB).usStackHighWaterMark);
    	    		usbprintstring(TB);


    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x05) //Set and get task Tag
    	{
    		TaskHookFunction_t TV = 0;
    		char * TB = pvPortMalloc(1024);

    		BaseType_t cbf( void * param )
    		{
    			return 100;
    		}

    		vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) 1 );
    		usbprintstring("LED task's TAG is set to digital\r\n");
    		TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);

    		sprintf(TB, "LED task's TAG is %.8x (digital)\r\n", TV);
    		usbprintstring(TB);


    		vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) cbf );
    		usbprintstring("LED task's TAG is set to function\r\n");
    		TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);
    		sprintf(TB, "LED task's TAG is %.8x (function address)\r\n", TV);
    		usbprintstring(TB);

    		BaseType_t (*fp)(void);
    		fp = TV;
    		BaseType_t rv = fp();
    		sprintf(TB, "Function return value is %d\r\n", rv);
    		usbprintstring(TB);

    		rv = xTaskCallApplicationTaskHook( TASK_LED_FLASHHandle, 0);
    		sprintf(TB, "Function return value is %d\r\n", rv);
    		usbprintstring(TB);

    		vPortFree(TB);

    	}

    	if(USB_VCOM_BUFF[0]==0x06) //Get current task handle
    	{
    		TaskHandle_t th = xTaskGetCurrentTaskHandle();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Current task's handle(pointer) is 0x%.8x\r\n", th);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x07) //Get task handle from task name
    	{
    		TaskHandle_t th = xTaskGetHandle("TASK_LED_FLASH");

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "'TASK_LED_FLASH' task's handle(pointer) is 0x%.8x\r\n", th);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x08) //Get idle task handle
    	{
    		TaskHandle_t th = xTaskGetIdleTaskHandle();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Idle task's handle(pointer) is 0x%.8x\r\n", th);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x09) //Get task stack-high-water-mark
    	{
    		UBaseType_t tshwm = uxTaskGetStackHighWaterMark(TASK_LED_FLASHHandle);

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Led task's stack-high-water-mark is %d\r\n", tshwm);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0A) //Get task running state
    	{
    		eTaskState ts = eTaskGetState(TASK_LED_FLASHHandle);

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Led task's running state is %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", ts);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0B) //Get task name from task handle
    	{
    		char * tn = pcTaskGetName(TASK_LED_FLASHHandle);

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Led task's name is %s\r\n", tn);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0C) //Get tick count
    	{
    		TickType_t tc = xTaskGetTickCount();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Tick count is %ld\r\n", tc);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0D) //Get scheduler state
    	{
    		BaseType_t ts = xTaskGetSchedulerState();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Scheduler state is %ld\r\n0:taskSCHEDULER_SUSPENDED;1:taskSCHEDULER_NOT_STARTED;2:taskSCHEDULER_RUNNING\r\n", ts);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0E) //Get task number
    	{
    		UBaseType_t tn = uxTaskGetNumberOfTasks();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Task number is %ld\r\n", tn);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0F) //Get all tasks' information
    	{
    		char * TB = pvPortMalloc(1024);
    		vTaskList(TB);

    		usbprintstring("Name       State   Priority   Stack   Number\r\n");
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x10) //Task's thread local storage pointer write and read
    	{
    		char * TB = pvPortMalloc(1024);
    		vTaskSetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0, TB);

    		void * ta = pvTaskGetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0);

    		sprintf(TB, "LED Task's storage index is 0x%.8X\r\n", ta);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	USB_VCOM_INDEX = 0;
    }
  }
  /* USER CODE END StartTask_TASK_USB_VCOM */
}

main.c文件的完整代码为:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Example 2: LED flash + USB VCOM with semaphore binary for task api enquiry
//Written by Pegasus Yu
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "usb_device.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "semphr.h"
#include "task.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase = 7.63238716; //For STM32F401RCT6 working in 84MHz main clock

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_rx;

/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {
  .name = "defaultTask",
  .stack_size = 128 * 4,
  .priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for TASK_LED_FLASH */
osThreadId_t TASK_LED_FLASHHandle;
const osThreadAttr_t TASK_LED_FLASH_attributes = {
  .name = "TASK_LED_FLASH",
  .stack_size = 128 * 4,
  .priority = (osPriority_t) osPriorityLow,
};
/* Definitions for TASK_UART1 */
osThreadId_t TASK_UART1Handle;
const osThreadAttr_t TASK_UART1_attributes = {
  .name = "TASK_UART1",
  .stack_size = 128 * 4,
  .priority = (osPriority_t) osPriorityLow,
};
/* Definitions for TASK_USB_VCOM */
osThreadId_t TASK_USB_VCOMHandle;
const osThreadAttr_t TASK_USB_VCOM_attributes = {
  .name = "TASK_USB_VCOM",
  .stack_size = 128 * 4,
  .priority = (osPriority_t) osPriorityLow,
};
/* Definitions for USB_VCOM_BinarySem01 */
osSemaphoreId_t USB_VCOM_BinarySem01Handle;
const osSemaphoreAttr_t USB_VCOM_BinarySem01_attributes = {
  .name = "USB_VCOM_BinarySem01"
};
/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART1_UART_Init(void);
void StartDefaultTask(void *argument);
void StartTask_TASK_LED_FLASH(void *argument);
void StartTask_TASK_UART1(void *argument);
void StartTask_TASK_USB_VCOM(void *argument);

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len);
void usbprintstring(char * data)
{
	if(CDC_Transmit_FS((uint8_t *)data, strlen(data))==USBD_BUSY)
	{
		PY_Delay_us_t(1000000);
	    CDC_Transmit_FS((uint8_t *)data, strlen(data));
	}
}

void usbprintarray(uint8_t * data, uint16_t len)
{
	if(CDC_Transmit_FS(data, len)==USBD_BUSY)
	{
		PY_Delay_us_t(1000000);
		CDC_Transmit_FS(data, len);
	}
}

uint8_t USB_VCOM_BUFF[1024];
uint32_t USB_VCOM_INDEX = 0;

BaseType_t USB_VCOM_pxHigherPriorityTaskWaken;
TickType_t USB_VCOM_xBlockTime = 0;

BaseType_t testfun(void)
{
	return 0x55;
}
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Init scheduler */
  osKernelInitialize();

  /* USER CODE BEGIN RTOS_MUTEX */
  /* add mutexes, ... */
  /* USER CODE END RTOS_MUTEX */

  /* Create the semaphores(s) */
  /* creation of USB_VCOM_BinarySem01 */
  USB_VCOM_BinarySem01Handle = osSemaphoreNew(1, 0, &USB_VCOM_BinarySem01_attributes);

  /* USER CODE BEGIN RTOS_SEMAPHORES */
  /* add semaphores, ... */
  /* USER CODE END RTOS_SEMAPHORES */

  /* USER CODE BEGIN RTOS_TIMERS */
  /* start timers, add new ones, ... */
  /* USER CODE END RTOS_TIMERS */

  /* USER CODE BEGIN RTOS_QUEUES */
  /* add queues, ... */
  /* USER CODE END RTOS_QUEUES */

  /* Create the thread(s) */
  /* creation of defaultTask */
  defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);

  /* creation of TASK_LED_FLASH */
  TASK_LED_FLASHHandle = osThreadNew(StartTask_TASK_LED_FLASH, NULL, &TASK_LED_FLASH_attributes);

  /* creation of TASK_UART1 */
  TASK_UART1Handle = osThreadNew(StartTask_TASK_UART1, NULL, &TASK_UART1_attributes);

  /* creation of TASK_USB_VCOM */
  TASK_USB_VCOMHandle = osThreadNew(StartTask_TASK_USB_VCOM, NULL, &TASK_USB_VCOM_attributes);

  /* USER CODE BEGIN RTOS_THREADS */
  /* add threads, ... */
  /* USER CODE END RTOS_THREADS */

  /* USER CODE BEGIN RTOS_EVENTS */
  /* add events, ... */
  /* USER CODE END RTOS_EVENTS */

  /* Start scheduler */
  osKernelStart();

  /* We should never get here as control is now taken by the scheduler */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA2_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA2_Stream2_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 5, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin : LED_Pin */
  GPIO_InitStruct.Pin = LED_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/* USER CODE BEGIN Header_StartDefaultTask */
/**
  * @brief  Function implementing the defaultTask thread.
  * @param  argument: Not used
  * @retval None
  */
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{
  /* init code for USB_DEVICE */
  MX_USB_DEVICE_Init();
  /* USER CODE BEGIN 5 */
  /* Infinite loop */
  for(;;)
  {
    osDelay(1);
  }
  /* USER CODE END 5 */
}

/* USER CODE BEGIN Header_StartTask_TASK_LED_FLASH */
/**
* @brief Function implementing the TASK_LED_FLASH thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_LED_FLASH */
void StartTask_TASK_LED_FLASH(void *argument)
{
  /* USER CODE BEGIN StartTask_TASK_LED_FLASH */
  /* Infinite loop */
  for(;;)
  {
    osDelay(1000);
    HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13);
  }
  /* USER CODE END StartTask_TASK_LED_FLASH */
}

/* USER CODE BEGIN Header_StartTask_TASK_UART1 */
/**
* @brief Function implementing the TASK_UART1 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_UART1 */
void StartTask_TASK_UART1(void *argument)
{
  /* USER CODE BEGIN StartTask_TASK_UART1 */
  /* Infinite loop */
  for(;;)
  {
    osDelay(1);
  }
  /* USER CODE END StartTask_TASK_UART1 */
}

/* USER CODE BEGIN Header_StartTask_TASK_USB_VCOM */
/**
* @brief Function implementing the TASK_USB_VCOM thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_USB_VCOM */
void StartTask_TASK_USB_VCOM(void *argument)
{
  /* USER CODE BEGIN StartTask_TASK_USB_VCOM */
  BaseType_t err_stu = pdFALSE;

  UBaseType_t result = 0;

  /* Infinite loop */
  for(;;)
  {
    osDelay(10);
    USB_VCOM_xBlockTime = 0; //Block(waiting) time to get semaphore
    err_stu = xSemaphoreTake(USB_VCOM_BinarySem01Handle, USB_VCOM_xBlockTime);
    if(err_stu==pdTRUE)
    {

    	if(USB_VCOM_BUFF[0]==0x01) //Get task priority
    	{
    		result = uxTaskPriorityGet(TASK_LED_FLASHHandle);
    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "LED task's priority is %d\r\n", result);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x02) //Set task priority from current priority + 1
    	{
    		result = uxTaskPriorityGet(TASK_LED_FLASHHandle) + 1;
    		vTaskPrioritySet(TASK_LED_FLASHHandle, result);
    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "LED task's priority is set to %d\r\n", result);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x03) //Get all tasks' status and output LED task status
    	{
            uint32_t rt = 0;
    		TaskStatus_t * SB = pvPortMalloc(1024);
    		result = uxTaskGetSystemState(SB, 20, &rt);
    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Task number got is %d\r\n", result);
    		usbprintstring(TB);

    		for(uint32_t i=0; i<result;i++)
    		{
    			if(SB[i].xHandle == TASK_LED_FLASHHandle)
    			{
    	    		sprintf(TB, "LED task handle = %d\r\n", SB[i].xHandle);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task name = %s\r\n", SB[i].pcTaskName);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", SB[i].eCurrentState);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task current priority = %d\r\n", SB[i].uxCurrentPriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task base priority = %d\r\n", SB[i].uxBasePriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task runtime counter = %d\r\n", SB[i].ulRunTimeCounter);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack base = 0x%.8x\r\n", SB[i].pxStackBase);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack high water mark = %d\r\n", SB[i].usStackHighWaterMark);
    	    		usbprintstring(TB);

    			  break;
    			}
    		}

    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x04) //Get and output LED task's status
    	{
            uint32_t rt = 0;
    		TaskStatus_t * SB = pvPortMalloc(1024);
    		vTaskGetInfo(TASK_LED_FLASHHandle, SB, pdTRUE, eInvalid);
    		char * TB = pvPortMalloc(1024);

    	    		sprintf(TB, "LED task handle = %d\r\n", (*SB).xHandle);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task name = %s\r\n", (*SB).pcTaskName);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", (*SB).eCurrentState);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task current priority = %d\r\n", (*SB).uxCurrentPriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task base priority = %d\r\n", (*SB).uxBasePriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task runtime counter = %d\r\n", (*SB).ulRunTimeCounter);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack base = 0x%.8x\r\n", (*SB).pxStackBase);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack high water mark = %d\r\n", (*SB).usStackHighWaterMark);
    	    		usbprintstring(TB);


    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x05) //Set and get task Tag
    	{
    		TaskHookFunction_t TV = 0;
    		char * TB = pvPortMalloc(1024);

    		BaseType_t cbf( void * param )
    		{
    			return 100;
    		}

    		vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) 1 );
    		usbprintstring("LED task's TAG is set to digital\r\n");
    		TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);

    		sprintf(TB, "LED task's TAG is %.8x (digital)\r\n", TV);
    		usbprintstring(TB);


    		vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) cbf );
    		usbprintstring("LED task's TAG is set to function\r\n");
    		TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);
    		sprintf(TB, "LED task's TAG is %.8x (function address)\r\n", TV);
    		usbprintstring(TB);

    		BaseType_t (*fp)(void);
    		fp = TV;
    		BaseType_t rv = fp();
    		sprintf(TB, "Function return value is %d\r\n", rv);
    		usbprintstring(TB);

    		rv = xTaskCallApplicationTaskHook( TASK_LED_FLASHHandle, 0);
    		sprintf(TB, "Function return value is %d\r\n", rv);
    		usbprintstring(TB);

    		vPortFree(TB);

    	}

    	if(USB_VCOM_BUFF[0]==0x06) //Get current task handle
    	{
    		TaskHandle_t th = xTaskGetCurrentTaskHandle();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Current task's handle(pointer) is 0x%.8x\r\n", th);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x07) //Get task handle from task name
    	{
    		TaskHandle_t th = xTaskGetHandle("TASK_LED_FLASH");

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "'TASK_LED_FLASH' task's handle(pointer) is 0x%.8x\r\n", th);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x08) //Get idle task handle
    	{
    		TaskHandle_t th = xTaskGetIdleTaskHandle();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Idle task's handle(pointer) is 0x%.8x\r\n", th);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x09) //Get task stack-high-water-mark
    	{
    		UBaseType_t tshwm = uxTaskGetStackHighWaterMark(TASK_LED_FLASHHandle);

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Led task's stack-high-water-mark is %d\r\n", tshwm);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0A) //Get task running state
    	{
    		eTaskState ts = eTaskGetState(TASK_LED_FLASHHandle);

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Led task's running state is %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", ts);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0B) //Get task name from task handle
    	{
    		char * tn = pcTaskGetName(TASK_LED_FLASHHandle);

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Led task's name is %s\r\n", tn);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0C) //Get tick count
    	{
    		TickType_t tc = xTaskGetTickCount();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Tick count is %ld\r\n", tc);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0D) //Get scheduler state
    	{
    		BaseType_t ts = xTaskGetSchedulerState();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Scheduler state is %ld\r\n0:taskSCHEDULER_SUSPENDED;1:taskSCHEDULER_NOT_STARTED;2:taskSCHEDULER_RUNNING\r\n", ts);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0E) //Get task number
    	{
    		UBaseType_t tn = uxTaskGetNumberOfTasks();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Task number is %ld\r\n", tn);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0F) //Get all tasks' information
    	{
    		char * TB = pvPortMalloc(1024);
    		vTaskList(TB);

    		usbprintstring("Name       State   Priority   Stack   Number\r\n");
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x10) //Task's thread local storage pointer write and read
    	{
    		char * TB = pvPortMalloc(1024);
    		vTaskSetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0, TB);

    		void * ta = pvTaskGetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0);

    		sprintf(TB, "LED Task's storage index is 0x%.8X\r\n", ta);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	USB_VCOM_INDEX = 0;
    }
  }
  /* USER CODE END StartTask_TASK_USB_VCOM */
}

/**
  * @brief  Period elapsed callback in non blocking mode
  * @note   This function is called  when TIM1 interrupt took place, inside
  * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
  * a global variable "uwTick" used as application time base.
  * @param  htim : TIM handle
  * @retval None
  */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
  /* USER CODE BEGIN Callback 0 */

  /* USER CODE END Callback 0 */
  if (htim->Instance == TIM1) {
    HAL_IncTick();
  }
  /* USER CODE BEGIN Callback 1 */

  /* USER CODE END Callback 1 */
}

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */



手动调整的代码

有几处的配置调整,需要手动进行:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

例程下载

STM32 STM32CUBEIDE FreeRTOS操作教程(十三):stask api 任务访问函数 例程

例程测试

例程测试效果如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

–End–


http://www.niftyadmin.cn/n/5868380.html

相关文章

Spring Boot集成RocketMQ:真实项目应用场景

第一部分&#xff1a;基础配置与简单示例 1. 项目初始化 使用Spring Boot创建一个项目&#xff0c;添加RocketMQ依赖。 POM依赖&#xff08;Maven&#xff09;&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spr…

DeepSeek回答:AI时代Go语言学习路线

最近有小伙伴经常会问&#xff1a;**该如何学习入门Go语言&#xff1f;怎样提升Go语言Coding水平&#xff1f;**这篇文章我们就使用DeepSeek来梳理下Go语言在AI时代的学习路线。 向DeepSeek提问的问题原文&#xff1a; 你现在是一名资深的Go语言工程师&#xff0c;精通Go语言并…

MySQL索引失效

MySQL索引失效会导致查询性能下降&#xff0c;常见原因及解决方案如下&#xff1a; 一、使用OR条件 原因&#xff1a;当OR条件中有一个列没有索引时&#xff0c;索引可能失效 解决方法&#xff1a;确保OR条件中的所有列都有索引&#xff0c;或使用UNION替代OR -- 不推荐 SE…

进程状态(R|S|D|t|T|X|Z)、僵尸进程及孤儿进程

文章目录 一.进程状态进程排队状态&#xff1a;运行、阻塞、挂起 二.Linux下的进程状态R 运行状态&#xff08;running&#xff09;S 睡眠状态&#xff08;sleeping)D 磁盘休眠状态&#xff08;Disk sleep&#xff09;t 停止、暂停状态(tracing stopped)T 停止、暂停状态(stopp…

【UCB CS 61B SP24】Lecture 14 - Data Structures 1: Disjoint Sets学习笔记

本文内容为数据结构并查集&#xff08;DSU&#xff09;的介绍与实现&#xff0c;详细讲解了并查集这一数据结构所能实现的各种操作&#xff0c;以及如何通过路径压缩与按秩合并大幅优化并查集的效率。 1. 并查集 1.1 介绍及其基础操作 并查集&#xff08;Disjoint Set Union…

冯诺依曼体系结构 ──── linux第8课

目录 冯诺依曼体系结构 关于冯诺依曼&#xff0c;必须强调几点&#xff1a; 冯诺依曼体系结构 我们常见的计算机&#xff0c;如笔记本。我们不常见的计算机&#xff0c;如服务器&#xff0c;大部分都遵守冯诺依曼体系 输入单元&#xff1a;包括键盘, 鼠标&#xff0c;网卡,扫…

C#语音识别与播报开发指南

C# 语音识别离线开发推荐库 以下是一些适用于 C# 离线语音识别的库&#xff0c;支持本地处理&#xff0c;无需网络连接&#xff1a; 1. System.Speech.Recognition (Windows) 简介&#xff1a;.NET Framework 自带的库&#xff0c;适合简单的离线命令词识别。适用场景&#x…

Python--内置函数与推导式(上)

1. 匿名函数 Lambda表达式基础 语法&#xff1a;lambda 参数: 表达式​ 特点&#xff1a; 没有函数名&#xff0c;适合简单逻辑函数体只能是单行表达式自动返回表达式结果 # 示例1&#xff1a;加法 add lambda a, b: a b print(add(3, 5)) # 输出 8# 示例2&#xff1a;字…